6.5 C
New York
Tuesday, January 26, 2021

Astronomers map latitudinal zones on a brown dwarf

Must Read

Coronavirus: Scientists develop an antibody that fights even new mutant strain

Scientists claim that the antibody protects against both the coronavirus and its strains – it also prevents the virus...

How common are allergic reactions to the Moderna vaccine in the US, according to CDC

The US Centers for Disease Control and Prevention (CDC) released data on January 22, 2021, on allergic reactions recorded from December...

Titan’s Kraken Mare surprises scientists with its depth

The largest pool of water on the moon of Saturn has an unexpected chemical composition and is ten times...
Aakash Molpariya
Aakash started in Nov 2018 as a writer at Revyuh.com. Since joining, as writer, he is mainly responsible for Software, Science, programming, system administration and the Technology ecosystem, but due to his versatility he is used for everything possible. He writes about topics ranging from AI to hardware to games, stands in front of and behind the camera, creates creative product images and much more. He is a trained IT systems engineer and has studied computer science. By the way, he is enthusiastic about his own small projects in game development, hardware-handicraft, digital art, gaming and music. Email: aakash (at) revyuh (dot) com

Astronomers using the TESS space telescope were able to determine the atmospheres of the brown dwarfs closest to Earth, included in the Luhman 16Binary Brown-Dwarf System, have a division into latitudinal cloud belts, which makes them similar to Jupiter.

It is believed that the properties of the atmospheres of exoplanets and brown dwarfs, which occupy an intermediate position between giant planets and stars, are strongly influenced by the presence of clouds, while the properties of the clouds themselves are determined by dynamic processes in the atmospheres. 

In particular, the presence or absence of clouds affects the local pressure and temperature profiles in the atmospheres of brown dwarfs. In addition, changes in the brightness of some objects of this kind can be explained by cloud cover of different thickness, for the formation of which, according to scientists, planetary waves may be responsible. However, long-term and reasonably accurate observations of large numbers of brown dwarfs are needed to test the theories. 

A group of astronomers led by Daniel Apai of the University of Arizona published the results of an analysis of observations of the Luhman 16 system using the TESS space telescope from March 26 to April 22, 2019. The system itself is a pair of L and T-type brown dwarfs that have masses of 33.5 and 28.6 Jupiter masses and are only 6.51 light-years from the Sun. Earlier observations by another group of researchers allowed to determine that clouds can exist in the atmospheres of these dwarfs, in particular, latitudinal cloud layers (belts) should exist on Luhman 16A

In the new work, scientists by analyzing the light curve of dwarfs and comparing observational data with models wanted to understand what the structure of clouds in the atmospheres of dwarfs is.

Astronomers have concluded that both brown dwarfs are observed at angles close to their equatorial planes. The rotation period of the dwarf Luhman 16 A was estimated at 6.94 hours, and the atmosphere of Luhman 16 B, according to scientists, is similar to that of Jupiter and is formed by zonal circulation and high-speed flows. 

Long-term variations in the light curve were interpreted as a contribution from the polar regions of the dwarfs, where vortices predominate. Thus, both brown dwarfs closest to Earth have a division of the atmosphere into latitudinal zones. It is expected that repeated observations of the system using TESS, scheduled for March – April 2021, will provide a more accurate understanding of the structure of the atmospheres of its components.

Scheme of possible division into latitudinal zones of the atmosphere of the brown dwarf Luhman 16 B.
Daniel Apai et al. / The Astrophysical Journal, 2020

The article was published in The Astrophysical Journal.

- Advertisement -
- Advertisement -

Latest News

Coronavirus: Scientists develop an antibody that fights even new mutant strain

Scientists claim that the antibody protects against both the coronavirus and its strains – it also prevents the virus...
- Advertisement -

More Articles Like This

- Advertisement -